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Lecture Outline

• Double Beta Decay
– Basic physics
– General experimental techniques
– The various experiments
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Example Decay Scheme
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ββ(2ν): Allowed weak decay
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ββ(0ν): requires massive Majorana ν
Only practical way to address the particle-antiparticle question
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Energy Spectrum for the 2 e-
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ββ History

• ββ(2ν) rate first calculated by Maria Goeppert-
Mayer in 1935.

• First observed directly in 1987.
• Why so long? Background

τ1/2(U, Th) ~ Tuniverse

τ1/2(ββ(2ν)) ~ 1010 Tuniverse

• But next we want to  look for a process with:

τ1/2(ββ(0ν)) ~ 1017 Tuniverse



June 2007 Steve Elliott, FNAL Neutrino Summer School 8

ββ Candidates

There are a lot of them!
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How to choose a ββ isotope?

• Detector technology exists

• High isotopic abundance or an enriched
source exists.

• High energy = fast rate

• High energy = above background
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ββ Candidates
Abundance > 5%,Trans. Energy > 2 MeV

Frequently studied isotope.
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ββ Decay Rates

!
2" = G2" M2"

2

!
0" = G0"M0"

2

m"
2

G are calculable phase space factors.
G0ν ~ Q5

|M| are nuclear physics matrix elements.
Hard to calculate.

mν is where the interesting physics lies.
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“Because Its 
Not There”

Larson
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Neutrino Mass: What do we want to know?
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Neutrino Mass: How do we learn what we want to
know?
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Need all 3 types of experiments.
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Neutrino Masses: What do we know?

• The results of oscillation experiments indicate ν
do have mass!, set the relative mass scale, and a
minimum for the absolute scale.

• β decay experiments set a maximum for the
absolute mass scale.

50 meV  < mν  < 2200 meV
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We also know ν mix.
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The weak interaction produces νe, νµ, ντ.

These are not pure mass states but a linear
combination of mass states.

Oscillation experiments indicate 
that ν mix and constrain Uαi.
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Oscillations and  Hierarchy
Possibilities
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What about mixing, mν & ββ(0ν)?
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Why does the CP parity appear in <mββ>?

Look at the critical part of this diagram.
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The crossed channel.
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What can be learned from Oscillations & ββ?

• From oscillations, we have:
Information on Uei
Information on δm2

• With <mββ> constraints, we can constrain m1:
(2 flavor example)
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Min. <mββ> as a vector sum.
General Case
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<mββ> is the modulus of the resultant.
In this example, <mββ> has a min.  It cannot be 0.
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Plot
Thanks to
Petr Vogel

More General: 3 ν

50 meV or
few x 1027 yr

msmallest

<m
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More General

Plot
Thanks to
Petr Vogel

50 meV or
few x 1027 yr
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50 meV
Or ~ 1027 yr
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An exciting time for  ββ!

< mββ > in the range of
10 - 50 meV is very interesting.

For the next experiments:

For at least
one

neutrino:
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The 1st Observation
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The Heidelberg-Moscow Experiment
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Elliott & Vogel
Annu. Rev. Part. Sci. 2002 52:115
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An Ideal Experiment
Maximize Rate/Minimize Background

• Large Mass (~ 1 ton)
• Good source radiopurity

• Demonstrated technology
• Natural isotope

• Small volume, source = detector
• Good energy resolution

• Ease of operation
• Large Q value, fast ββ(0ν)

• Slow ββ(2ν) rate
• Identify daughter

•  Event reconstruction
• Nuclear theory
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Great Number of Proposed Experiments

• Calorimeter
– Semi-conductors
– Bolometers
– Crystals/nanoparticles immersed in scintillator

• Tracking
– Liquid or gas TPCs
– Thin source with wire chamber or scintillator
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A Recent Claim for ββ(0ν)
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The ROI

The “feature” at 2038
keV is arguably
present. This will
probably require
experimental testing.

Background level
depends on intensity fit
to other peaks.
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Future Data Requirements

Why wasn’t this claim sufficient to avoid
controversy?

• Low statistics of claimed signal - hard to
repeat measurement
• Background model uncertainty
• Unidentified lines
• Insufficient auxiliary handles

Result needs confirmation or repudiation



June 2007 Steve Elliott, FNAL Neutrino Summer School 36

Various Levels of Confidence

• A preponderance of the evidence: a combination of
– Correct peak energy
– Single-site energy deposit
– Proper detector distributions (spatial, temporal)
– Rate scales with isotope fraction

• Beyond a reasonable doubt: include the following
– Observe the two-electron nature of the event
– Measure kinematic dist. (energy sharing, opening angle)
– Observe the daughter
– Observe the excited state decay

• Open and shut case: the smoking gun
– See the process in several isotopes
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Classes of Background for ββ(0ν)

• ββ(2ν) tail
Need good energy resolution.

• Natural U, Th in source and shielding
Pure materials, segmentation, pulse shape.

• Cosmic ray activation
Store and prepare materials underground.
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ββ(2ν) as a Background.
Sum Energy Cut Only

next generation
experimental
goal
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Natural Activity

• The Problem:
 τ(U, Th) ~ 1010 years
Goal: τ(ββ(0ν)) ~ 1027 years

• Detector: Intrinsic Ge is very pure
• Cryostat: Electro-formed Cu
• Shielding: Roman Pb
• Front End Electronics: behind shield
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Cosmic Ray Induced Activity

• Material dependent.
Lots of experience with Ge.

• Need for depth to avoid activation.

• Need for storage to allow activation
to decay.
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Pb(n,n’γ) and 76Ge: an example

206Pb 207Pb
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